Operational technology (OT) asset owners have historically considered red teaming of OT and industrial control system (ICS) networks to be too risky due to the potential for disruptions or adverse impact to production systems. While this mindset has remained largely unchanged for years, Mandiant's experience in the field suggests that these perspectives are changing; we are increasingly delivering value to customers by safely red teaming their OT production networks.
This increasing willingness to red team OT is likely driven by a couple of factors, including the growing number and visibility of threats to OT systems, the increasing adoption of IT hardware and software into OT networks, and the maturing of OT security teams. In this context, we deemed it relevant to share some details on Mandiant's approach to red teaming in OT based on years of experience supporting customers learning about tangible threats in their production environments.
In this post we introduce Mandiant's approach to OT red teaming and walk through a case study. During that engagement, it took Mandiant only six hours to gain administrative control on the target's OLE for Process Control (OPC) servers and clients in the target's Distributed Control System (DCS) environment. We then used this access to collect information and develop an attack scenario simulating the path a threat actor could take to prepare for and attack the physical process (We highlight that the red team did not rely on weaknesses of the DCS, but instead weak password implementations in the target environment).
NOTE: Red teaming in OT production systems requires planning, preparation and "across the aisle" collaboration. The red team must have deep knowledge of industrial process control and the equipment, software, and systems used to achieve it. The red team and the asset owner must establish acceptable thresholds before performing any activities.
Visit our website for more information or to request Mandiant services or threat intelligence.
Mandiant's approach to red teaming OT production systems consists of two phases: active testing on IT and/or OT intermediary systems, and custom attack modeling to develop one or more realistic attack scenarios. Our approach is designed to mirror the OT-targeted attack lifecycle—with active testing during initial stages (Initial Compromise, Establish Foothold, Escalate Privileges, and Internal Reconnaissance), and a combination of active/passive data collection and custom threat modeling to design feasible paths an attacker would follow to complete the mission.
Figure 1: Mandiant OT red teaming approach
Mandiant's OT red teaming can be scoped in different ways depending on the target environment, the organization's goals, and the asset owner's cyber security program maturity. For example, some organizations may test the full network architecture, while others prefer to sample only an attack on a single system or process. This type of sampling is useful for organizations that own a large number of processes and are unlikely to test them one by one, but instead they can learn from a single-use case that reflects target-specific weaknesses and vulnerabilities. Depending on the scope, the red teaming results can be tailored to:
Red teaming in OT can be uniquely helpful for defenders, as it generates value in a way very specific to an organizations' needs, while decreasing the gap between the "no holds barred" world of real attackers and the "safety first" responsibility of the red team. While it is common for traditional red teaming engagements to end shortly after the attacker pivots into a production OT segment, a hybrid approach, such as the one we use, makes it possible for defenders to gain visibility into the specific strengths and weaknesses of their OT networks and security implementations. Here are some other benefits of red teaming in OT production networks:
During this engagement, we were tasked with gaining access to critical control systems and designing a destructive attack in an environment where industrial steaming boilers are operated with an Distributed Control System (DCS). In this description, we redacted customer information—including the name, which we refer to as "Big Steam Works"—and altered sensitive details. However, the overall attack techniques remain unchanged. The main objective of Big Steam Works is to deliver steam to a nearby chemical production company.
For the scope of this red team, the customer wanted to focus entirely on its OT production network. We did not perform any tests in IT networks and instead begun the engagement with initial access granted in the form of a static IP address in Big Steam Work's OT network. The goal of the engagement was to deliver consequence-driven analysis exploring a scenario that could cause a significant physical impact to both safety and operations. Following our red teaming approach, the engagement was divided in two phases: active testing across IT and/or OT intermediary systems, and custom attack modeling to foresee paths an attacker may follow to complete its mission.
We note that during the active testing phase we were very careful to maintain high safety standards. This required not only highly skilled personnel with knowledge about both IT and OT, but also constant engagement with the customer. Members from Big Steam Works helped us to set safety thresholds to stop and evaluate results before moving forward, and actively monitored the test to observe, learn, and remain vigilant for any unintended changes in the process.
Phase 1 – Active Testing
During this phase, we leveraged publicly accessible offensive security tools (including Wireshark, Responder, Hashcat, and CrackMapExec) to collect information, escalate privileges, and move across the OT network. In close to six hours, we achieved administrative control on several Big Steam Works' OLE for Process Control (OPC) servers and clients in their DCS environment. We highlight that the test did not rely on weaknesses of the DCS, but instead weak password implementations in the target environment. Figure 2 details our attack path:
Figure 2: Active testing in Big Steam
Work's OT network
The TTPs we used during the active testing phase resemble some of the simplest resources that can be used by threat actors during real OT intrusions. The case results are concerning given that they illustrate only a few of the most common weaknesses we often observe across Mandiant OT red team engagements. We highlight that all the tools used for this intrusion are known and publicly available. An attacker with access to Big Steam Works could have used these methods as they represent low-hanging fruit and can often be prevented with simple security mitigations.
Phase 2 – Custom Attack Modeling
For roughly a week, Mandiant gathered additional information from client documentation and research on industrial steaming boilers. We then mirrored the process an attacker would follow to design a destructive attack on the target process given the results achieved during phase 1. At this point of the intrusion, the attacker would have already obtained complete control over Big Steam Works' OPC clients and servers, gaining visibility and access to the DCS environment.
Before defining the path to follow, the attacker would likely have to perform further reconnaissance (e.g., compromising additional systems, data, and credentials within the Big Steam Works DCS environment). Specifically, the attacker could:
Our next step was to develop the custom scenario. For this example, we were tasked with modeling a case where the attacker was attempting to create a condition that had a high likelihood of causing physical damage and disruption of operations (see Figure 3). In this scenario, the attacker attempted to achieve this by lowering the water level in a boiler drum below the safe threshold while not tripping the burner management system or other safety mechanisms. If successful, this would result in rapid and extreme overheating in the boiler. Opening the feedwater valve under such conditions could result in a catastrophic explosion.
Figure 3: Custom attack model diagram for
Big Steam Works
Figure 3 describes how a real attacker might pursue their mission after gaining access to the OPC servers and clients. As the actor moves closer to their goals, it becomes more difficult to assess both the probability of success and the actual impact of their actions due to nuances specific to the client environment and additional safety and security controls built into the process. However, the analysis holds significant value as it illustrates the overall structure of the physical process and potential attacker behaviors aimed at achieving specific end goals. Furthermore, it proceeds directly from the results obtained during the first phase of the red teaming.
The model presents one feasible combination of actions that an attacker could perform to access devices governing the boiler drum and modify the water level while remaining undetected. With the level of access obtained from phase 1, the attacker would likely be able to compromise engineering workstations (EWS) for the boiler drum's controller using similar tools. This would likely enable the actor to perform actions such as changing the drum level setpoints, modifying the flow of steam scaling, or modifying water flow scaling. While the model does not reflect all additional safety and security measures that may be present deeper in the process, it does account for the attacker's need to modify alarms and control sensor outputs to remain undetected.
By connecting the outcomes produced in the test to the potential physical impacts and motivations involved in a real attack, this model provided Big Steam Works with a realistic overview of cyber security threats to a specific physical process. Further collaboration with the customer enabled us to validate the findings and support the organization to mitigate the risks reflected in the model.
Mandiant's OT red teaming supports organizations by combining both the hands-on analysis of vulnerabilities and weaknesses in IT and OT networks with the conceptual modeling of attacker goals and possible avenues to reach specific outcomes. It also enables security practitioners to adopt the attacker's perspective and explore attack vectors that may otherwise have not been conceived regardless of their value as low-hanging fruit for OT intrusions.
Our approach presents realistic scenarios based upon technical evidence of intrusion activity upon OT intermediary systems in the tested network. In this way, it is tailored to support consequence-driven analysis of threats to specific critical systems and processes. This enables organizations to identify attack scenarios involving digital assets and determine safeguards that can best help to protect the process and ensure the safety of their facilities.
Head over to our website for more information or to request Mandiant services or threat intelligence.
Click to Open Code Editor