Welcome to our

Cyber Security News Aggregator

.

Cyber Tzar

provide a

cyber security risk management

platform; including automated penetration tests and risk assesments culminating in a "cyber risk score" out of 1,000, just like a credit score.

Excelerating Analysis, Part 2 — X[LOOKUP] Gon’ Pivot To Ya

published on 2020-04-28 17:30:00 UTC by Jake Nicastro
Content:

In December 2019, we published a blog post on augmenting analysis using Microsoft Excel for various data sets for incident response investigations. As we described, investigations often include custom or proprietary log formats and miscellaneous, non-traditional forensic artifacts. There are, of course, a variety of ways to tackle this task, but Excel stands out as a reliable way to analyze and transform a majority of data sets we encounter.

In our first post, we discussed summarizing verbose artifacts using the CONCAT function, converting timestamps using the TIME function, and using the COUNTIF function for log baselining. In this post, we will cover two additional versatile features of Excel: LOOKUP functions and PivotTables.

For this scenario, we will use a dataset of logon events for an example Microsoft Office 365 (O365) instance to demonstrate how an analyst can enrich information in the dataset. Then we will demonstrate some examples of how to use PivotTables to summarize information and highlight anomalies in the data quickly.

Our data contains the following columns:

  • Description – Event description
  • User – User’s name
  • User Principle Name – email address
  • App – such as Office 365, Sharepoint, etc.
  • Location – Country
  • Date
  • IP address
  • User agent (simplified)
  • Organization – associated with IP address (as identified by O365)


Figure 1: O365 data set

LOOKUP for Data Enrichment

It may be useful to add more information to the data that could help us in analysis that isn’t provided by the original log source. A step FireEye Mandiant often performs during investigations is to take all unique IP addresses and query threat intelligence sources for each IP address for reputation, WHOIS information, connections to known threat actor activity, etc. This grants more information about each IP address that we can take into consideration in our analysis.

While FireEye Mandiant is privy to historical engagement data and Mandiant Threat Intelligence, if security teams or organizations do not have access to commercial threat intelligence feeds, there are numerous open source intelligence services that can be leveraged.

We can also use IP address geolocation services to obtain latitude and longitude related to each source IP address. This information may be useful in identifying anomalous logons based on geographical location.

After taking all source IP addresses, running them against threat intelligence feeds and geolocating them, we have the following data added to a second sheet called “IP Address Intel” in our Excel document:


Figure 2: IP address enrichment

We can already see before we even dive into the logs themselves that we have suspicious activity: The five IP addresses in the 203.0.113.0/24 range in our data are known to be associated with activity connected to a fictional threat actor tracked as TMP.OGRE.

To enrich our original dataset, we will add three columns to our data to integrate the supplementary information: “Latitude,” “Longitude,” and “Threat Intel” (Figure 3). We can use the VLOOKUP or XLOOKUP functions to quickly retrieve the supplementary data and integrate it into our main O365 log sheet.


Figure 3: Enrichment columns

VLOOKUP

The traditional way to look up particular data in another array is by using the VLOOKUP function. We will use the following formula to reference the “Latitude” values for a given IP address:


Figure 4: VLOOKUP formula for Latitude

There are four parts to this formula:

  1. Value to look up:
    • This dictates what cell value we are going to look up more information for. In this case, it is cell G2, which is the IP address.
  2. Table array:
    • This defines the entire array in which we will look up our value and return data from. The first column in the array must contain the value being looked up. In the aforementioned example, we are searching in ‘IP Address Intel’!$A$2:$D:$15. In other words, we are looking in the other sheet in this workbook we created earlier titled “IP Address Intel”, then in that sheet, search in the cell range of A2 to D15.

      Figure 5: VLOOKUP table array

      Note the use of the “$” to ensure these are absolute references and will not be updated by Excel if we copy this formula to other cells.
  3. Column index number:
    • This identifies the column number from which to return data. The first column is considered column 1. We want to return the “Latitude” value for the given IP address, so in the aforementioned example, we tell Excel to return data from column 2.
  4. Range lookup (match type)
    • This part of the formula tells Excel what type of matching to perform on the value being looked up. Excel defaults to “Approximate” matching, which assumes the data is sorted and will match the closest value. We want to perform “Exact” matching, so we put “0” here (“FALSE” is also accepted).

With the VLOOKUP function complete for the “Latitude” data, we can use the fill handle to update this field for the rest of the data set.

To get the values for the “Longitude” and “Threat Intel” columns, we repeat the process by using a similar function and, adjusting the column index number to reference the appropriate columns, then use the fill handle to fill in the rest of the column in our O365 data sheet:

  • For Longitude:
    • =VLOOKUP(G2,'IP Address Intel'!$A$2:$D$15,3,0)
  • For Threat Intel:
    • =VLOOKUP(G2,'IP Address Intel'!$A$2:$D$15,4,0)

Bonus Option: XLOOKUP

The XLOOKUP function in Excel is a more efficient way to reference the threat intelligence data sheet. XLOOKUP is a newer function introduced to Excel to replace the legacy VLOOKUP function and, at the time of writing this post, is only available to “O365 subscribers in the Monthly channel”, according to Microsoft. In this instance, we will also leverage Excel’s dynamic arrays and “spilling” to fill in this data more efficiently, instead of making an XLOOKUP function for each column.

NOTE: To utilize dynamic arrays and spilling, the data we are seeking to enrich cannot be in the form of a “Table” object. Instead, we will apply filters to the top row of our O365 data set by selecting the “Filter” option under “Sort & Filter” in the “Home” ribbon:


Figure 6: Filter option

To reference the threat intelligence data sheet using XLOOKUP, we will use the following formula:


Figure 7: XLOOKUP function for enrichment

There are three parts to this XLOOKUP formula:

  1. Value to lookup:
    • This dictates what cell value we are going to look up more information for. In this case, it is cell G2, which is the IP address.
  2. Array to look in:
    • This will be the array of data in which Excel will search for the value to look up. Excel does exact matching by default for XLOOKUP. In the aforementioned example, we are searching in ‘IP Address Intel’!$A$2:$A:$15. In other words, we are looking in the other sheet in this workbook titled “IP Address Intel”, then in that sheet, search in the cell range of A2 to A15:

      Figure 8: XLOOKUP array to look in

      Note the use of the “$” to ensure these are absolute references and will not be updated by Excel if we copy this formula to other cells.
  3. Array of data to return:
    • This part will be the array of data from which Excel will return data. In this case, Excel will return the data contained within the absolute range of B2 to D15 from the “IP Address Intel” sheet for the value that was looked up. In the aforementioned example formula, it will return the values in the row for the IP address 198.51.100.126:

      Figure 9: Data to be returned from ‘IP Address Intel’ sheet

      Because this is leveraging dynamic arrays and spilling, all three cells of the returned data will populate, as seen in Figure 4.

Now that our dataset is completely enriched by either using VLOOKUP or XLOOKUP, we can start hunting for anomalous activity. As a quick first step, since we know at least a handful of IP addresses are potentially malicious, we can filter on the “Threat Intel” column for all rows that match “TMP.OGRE” and reveal logons with source IP addresses related to known threat actors. Now we have timeframes and suspected compromised accounts to pivot off of for additional hunting through other data.

PIVOT! PIVOT! PIVOT!

One of the most useful tools for highlighting anomalies by summarizing data, performing frequency analysis and quickly obtaining other statistics about a given dataset is Excel’s PivotTable function.

Location Anomalies

Let’s utilize a PivotTable to perform frequency analysis on the location from which users logged in. This type of technique may highlight activity where a user account logged in from a location which is unusual for them.

To create a PivotTable for our data, we can select any cell in our O365 data and select the entire range with Ctrl+A. Then, under the “Insert” tab in the ribbon, select “PivotTable”:


Figure 10: PivotTable selection

This will bring up a window, as seen in Figure 11, to confirm the data for which we want to make a PivotTable (Step 1 in Figure 11). Since we selected our O365 log data set with Ctrl+A, this should be automatically populated. It will also ask where we want to put the PivotTable (Step 2 in Figure 11). In this instance, we created another sheet called “PivotTable 1” to place the PivotTable:


Figure 11: PivotTable creation

Now that the PivotTable is created, we must select how we want to populate the PivotTable using our data. Remember, we are trying to determine the locations from which all users logged in. We will want a row for each user and a sub-row for each location the user has logged in from. Let’s add a count of how many times they logged in from each location as well. We will use the “Date” field to do this for this example:


Figure 12: PivotTable field definitions

Examining this table, we can immediately see there are two users with source location anomalies: Ginger Breadman and William Brody have a small number of logons from “FarFarAway”, which is abnormal for these users based on this data set.

We can add more data to this PivotTable to get a timeframe of this suspicious activity by adding two more “Date” fields to the “Values” area. Excel defaults to “Count” of whatever field we drop in this area, but we will change this to the “Minimum” and “Maximum” values by using the “Value Field Settings”, as seen in Figure 13.


Figure 13: Adding min and max dates

Now we have a PivotTable that shows us anomalous locations for logons, as well as the timeframe in which the logons occurred, so we can hone our investigation. For this example, we also formatted all cells with timestamp values to reflect the format FireEye Mandiant typically uses during analysis by selecting all the appropriate cells, right-clicking and choosing “Format Cells”, and using a “Custom” format of “YYYY-MM-DD HH:MM:SS”.


Figure 14: PivotTable with suspicious locations and timeframe

IP Address Anomalies

Geolocation anomalies may not always be valuable. However, using a similar configuration as the previous example, we can identify suspicious source IP addresses. We will add “User Principle Name” and “IP Address” fields as Rows, and “IP Address” as Values. Let’s also add the “App” field to Columns. Our field settings and resulting table are displayed in Figure 15:


Figure 15: PivotTable with IP addresses and apps

With just a few clicks, we have a summarized table indicating which IP addresses each user logged in from, and which app they logged into. We can quickly identify two users logged in from IP addresses in the 203.0.113.0/24 range six times, and which applications they logged into from each of these IP addresses.

While these are just a couple use cases, there are many ways to format and view evidence using PivotTables. We recommend trying PivotTables on any data set being reviewed with Excel and experimenting with the Rows, Columns, and Values parameters.

We also recommend adjusting the PivotTable options, which can help reformat the table itself into a format that might fit requirements.

Conclusion

These Excel functions are used frequently during investigations at FireEye Mandiant and are considered important forensic analysis techniques. The examples we give here are just a glimpse into the utility of LOOKUP functions and PivotTables. LOOKUP functions can be used to reference a multitude of data sources and can be applied in other situations during investigations such as tracking remediation and analysis efforts.

PivotTables may be used in a variety of ways as well, depending on what data is available, and what sort of information is being analyzed to identify suspicious activity. Employing these techniques, alongside the ones we highlighted previously, on a consistent basis will go a long way in "excelerating" forensic analysis skills and efficiency.

Article: Excelerating Analysis, Part 2 — X[LOOKUP] Gon’ Pivot To Ya - published over 4 years ago.

http://www.fireeye.com/blog/threat-research/2020/04/excelerating-analysis-lookup-pivot.html   
Published: 2020 04 28 17:30:00
Received: 2021 06 06 09:05:11
Feed: FireEye Blog
Source: FireEye Blog
Category: Cyber Security
Topic: Cyber Security
Views: 3

Custom HTML Block

Click to Open Code Editor